回归算法实例一:家庭用电预测——时间与功率、功率与电流、时间与电压之间的关系

安装numpy:pip install --index https://pypi.mirrors.ustc.edu.cn/simple/ numpy
安装scipy:pip install --index https://pypi.mirrors.ustc.edu.cn/simple/ scipy
安装matplotlib:pip install --index https://pypi.mirrors.ustc.edu.cn/simple/ matplotlib
安装scikit-learn:pip install --index https://pypi.mirrors.ustc.edu.cn/simple/ scikit-learn
安装pandas:pip install --index https://pypi.mirrors.ustc.edu.cn/simple/ pandas

导入包:

# 引入所需要的全部包
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
from pandas import DataFrame
import time

# 设置字符集,防止中文乱码
mpl.rcParams['font.sans-serif']=[u'simHei']
mpl.rcParams['axes.unicode_minus']=False

数据预处理

# 加载数据,数据字段:日期、时间、有功功率、无功功率、电压、电流、厨房用电功率、洗衣服用电功率、热水器用电功率
path='datas/household_power_consumption_1000.txt'
# 没有混合类型的时候可以通过low_memory=False调用更多内存,加快效率
df = pd.read_csv(path, sep=';', low_memory=False)
# 获取前五行数据查看
df.head() 

# 查看格式信息
df.info()

# 异常数据处理(异常数据过滤)
# 替换非法字符为np.nan
new_df = df.replace('?', np.nan)
# 只要有一个数据为空,就进行行删除操作
datas = new_df.dropna(axis=0,how = 'any') 
# 观察数据的多种统计指标
datas.describe().T

# 查看格式信息
new_df.info()

时间与功率之间的关系

# 创建一个时间函数格式化字符串
def date_format(dt):
    import time
    t = time.strptime(' '.join(dt), '%d/%m/%Y %H:%M:%S')
    return (t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec)

# 获取x和y变量,并将时间转换为数值型连续变量
X = datas.iloc[:,0:2]
X = X.apply(lambda x: pd.Series(date_format(x)), axis=1)
Y = datas['Global_active_power']

X.head(2)

# 对数据集进行测试集和训练集划分
# X:特征矩阵(类型一般是DataFrame)
# Y:特征对应的Label标签(类型一般是Series)
# test_size: 对X/Y进行划分的时候,测试集合的数据占比, 是一个(0,1)之间的float类型的值
# random_state:数据分割是基于随机器进行分割的,该参数给定随机数种子;给一个值(int类型)的作用就是保证每次分割所产生的数据集是完全相同的
X_train,X_test,Y_train,Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)

print(X_train.shape)
print(X_test.shape)
print(Y_train.shape)
print(Y_test.shape)

X_train.describe().T

# 数据标准化
# StandardScaler:将数据转换为标准差为1的数据集(有一个数据的映射)
# 如果一个API名字中有fit,那么就有模型训练的含义
# 如果一个API名字中有transform, 那么就表示对数据具有转换的含义操作
# 如果一个API名字中有predict,那么就表示进行数据预测,会有一个预测结果输出
ss = StandardScaler()
# 训练并转换
X_train = ss.fit_transform(X_train)
# 直接使用在模型构建数据上进行一个数据标准化操作
X_test = ss.transform(X_test) 

pd.DataFrame(X_train).describe().T

# 模型训练
lr = LinearRegression()
lr.fit(X_train, Y_train)
# 模型校验,预测结果
y_predict = lr.predict(X_test)

print("训练R2:",lr.score(X_train, Y_train))
print("测试R2:",lr.score(X_test, Y_test))
mse = np.average((y_predict-Y_test)**2)
rmse = np.sqrt(mse)
print("rmse:",rmse)

# 模型保存/持久化
# 在机器学习部署的时候,实际上其中一种方式就是将模型进行输出;另外一种方式就是直接将预测结果输出
# 模型输出一般是将模型输出到磁盘文件
from sklearn.externals import joblib

# 将标准化模型保存
joblib.dump(ss, "data_ss.model")
# 将模型保存
joblib.dump(lr, "data_lr.model")

# 加载标准化模型
ss = joblib.load("data_ss.model")
# 加载训练好的模型
lr = joblib.load("data_lr.model")

# 使用加载的模型进行预测
data1 = [[2006, 12, 17, 12, 25, 0]]
data1 = ss.transform(data1)
print(data1)
lr.predict(data1)

# 预测值和实际值画图比较
t=np.arange(len(X_test))
# 建一个画布,facecolor是背景色
plt.figure(facecolor='w')
plt.plot(t, Y_test, 'r-', linewidth=2, label='真实值')
plt.plot(t, y_predict, 'g-', linewidth=2, label='预测值')
# 显示图例,设置图例的位置
plt.legend(loc = 'upper left')
plt.title("线性回归预测时间和功率之间的关系", fontsize=20)
plt.grid(b=True)#加网格
plt.show()

功率与电流之间的关系

# 功率和电流之间的关系
X2 = datas.iloc[:,2:4]
Y2 = datas.iloc[:,5]

# 数据分割
X2_train,X2_test,Y2_train,Y2_test = train_test_split(X2, Y2, test_size=0.2, random_state=0)

# 数据归一化
scaler2 = StandardScaler()
# 训练并转换
X2_train = scaler2.fit_transform(X2_train)
# 直接使用在模型构建数据上进行一个数据标准化操作 
X2_test = scaler2.transform(X2_test)

# 模型训练
lr2 = LinearRegression()
lr2.fit(X2_train, Y2_train)

# 结果预测
Y2_predict = lr2.predict(X2_test)

# 模型评估
print("电流预测准确率: ", lr2.score(X2_test,Y2_test))
print("电流参数:", lr2.coef_)

# 绘制图表
t=np.arange(len(X2_test))
plt.figure(facecolor='w')
plt.plot(t, Y2_test, 'r-', linewidth=2, label=u'真实值')
plt.plot(t, Y2_predict, 'g-', linewidth=2, label=u'预测值')
plt.legend(loc = 'lower right')
plt.title(u"线性回归预测功率与电流之间的关系", fontsize=20)
plt.grid(b=True)
plt.show()

时间与电压之间的关系

names=['Date', 'Time', 'Global_active_power', 'Global_reactive_power', 'Voltage', 'Global_intensity', 'Sub_metering_1', 'Sub_metering_2', 'Sub_metering_3']

# 时间和电压之间的关系(Linear)
# 获取x和y变量, 并将时间转换为数值型连续变量
X3 = datas[names[0:2]]
X3 = X3.apply(lambda x: pd.Series(date_format(x)), axis=1)
Y3 = datas[names[4]].values

# 对数据集进行测试集和训练集划分 
X3_train,X3_test,Y3_train,Y3_test = train_test_split(X3, Y3, test_size=0.2, random_state=0)

# 数据标准化
ss = StandardScaler()
# 训练并转换
X3_train = ss.fit_transform(X3_train)
# 直接使用在模型构建数据上进行一个数据标准化操作 
X3_test = ss.transform(X3_test)

# 模型训练
lr = LinearRegression()
lr.fit(X3_train, Y3_train)

# 模型校验,预测结果
y3_predict = lr.predict(X3_test)

# 模型效果
print("准确率:",lr.score(X3_test, Y3_test))

# 预测值和实际值画图比较
t=np.arange(len(X3_test))
plt.figure(facecolor='w')
plt.plot(t, Y3_test, 'r-', linewidth=2, label=u'真实值')
plt.plot(t, y3_predict, 'g-', linewidth=2, label=u'预测值')
plt.legend(loc = 'lower right')
plt.title(u"线性回归预测时间和电压之间的关系", fontsize=20)
# 显示网格
plt.grid(b=True)
plt.show()

时间和电压之间的多项式关系

# Pipeline:管道的意思,将多个操作合并成为一个操作
# Pipleline总可以给定多个不同的操作,给定每个不同操作的名称即可,执行的时候,按照从前到后的顺序执行
models = [
    Pipeline([
            ('Poly', PolynomialFeatures()), 					# 给定进行多项式扩展操作, 第一个操作:多项式扩展
            ('Linear', LinearRegression(fit_intercept=False)) 	# 第二个操作,线性回归
        ])
]
model = models[0]
# 获取x和y变量, 并将时间转换为数值型连续变量
X4 = datas[names[0:2]]
X4 = X4.apply(lambda x: pd.Series(date_format(x)), axis=1)
Y4 = datas[names[4]]

# 对数据集进行测试集和训练集划分
X4_train,X4_test,Y4_train,Y4_test = train_test_split(X4, Y4, test_size=0.2, random_state=0)

# 数据标准化
ss = StandardScaler()
# 训练并转换
X4_train = ss.fit_transform(X4_train)
# 直接使用在模型构建数据上进行一个数据标准化操作 
X4_test = ss.transform(X4_test)

# 模型训练
t = np.arange(len(X4_test))
N = 5
# 1,2,3,4阶
d_pool = np.arange(1, N, 1)
m = d_pool.size
# 颜色
clrs = []
for c in np.linspace(16711680, 255, m):
    clrs.append('#%06x' % int(c))
line_width = 3
# 创建一个绘图窗口,设置大小,设置颜色
plt.figure(figsize=(12,6), facecolor='w')
for i,d in enumerate(d_pool):
    plt.subplot(N-1,1,i+1)
    plt.plot(t, Y4_test, 'r-', label=u'真实值', ms=10, zorder=N)
    # 设置管道对象中的参数值,Poly是在管道对象中定义的操作名称,后面跟参数名称,设置多项式的阶乘;中间是两个下划线
    model.set_params(Poly__degree=d)
    # 模型训练
    model.fit(X4_train, Y4_train)
    # Linear是管道中定义的操作名称,获取线性回归算法模型对象
    lin = model.get_params('Linear')['Linear']
    output = u'%d阶,系数为:' % d
    # 判断lin对象中是否有对应的属性
    if hasattr(lin, 'alpha_'):
        idx = output.find(u'系数')
        output = output[:idx] + (u'alpha=%.6f, ' % lin.alpha_) + output[idx:]
    if hasattr(lin, 'l1_ratio_'):
        idx = output.find(u'系数')
        output = output[:idx] + (u'l1_ratio=%.6f, ' % lin.l1_ratio_) + output[idx:]
    print (output, lin.coef_.ravel())
    
    # 模型结果预测
    y_hat = model.predict(X4_test)
    # 计算评估值
    s = model.score(X4_test, Y4_test)
    
    # 画图
    z = N - 1 if (d == 2) else 0
    label = u'%d阶, 准确率=%.3f' % (d,s)
    plt.plot(t, y_hat, color=clrs[i], lw=line_width, alpha=0.75, label=label, zorder=z)
    plt.legend(loc = 'upper left')
    plt.grid(True)
    plt.ylabel(u'%d阶结果' % d, fontsize=12)

# 预测值和实际值画图比较
plt.suptitle(u"线性回归预测时间和电压之间的多项式关系", fontsize=20)
plt.grid(b=True)
plt.show()

# 获取x和y变量,并将时间转换为数值型连续变量
X5 = datas[names[0:2]]
X5 = X5.apply(lambda x: pd.Series(date_format(x)), axis=1)
Y5 = datas[names[4]]

# 对数据集进行测试集合训练集划分
X5_train,X5_test,Y5_train,Y5_test = train_test_split(X5, Y5, test_size=0.2, random_state=0)

# 数据标准化
ss = StandardScaler()
# 训练并转换
X5_train = ss.fit_transform(X5_train)
# 直接使用在模型构建数据上进行一个数据标准化操作 
X5_test = ss.transform(X5_test)

# 多项式扩展
poly = PolynomialFeatures(degree=3, interaction_only=True)
train1 = poly.fit_transform(X5_train)
test1 = poly.transform(X5_test)

# 模型训练
linear = LinearRegression(fit_intercept=False)
linear.fit(train1, Y5_train)
print(linear.score(test1, Y5_test))
print(linear.coef_)
print(linear.intercept_)

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页