import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import pandas as pd
import warnings
import sklearn
from sklearn.linear_model import LogisticRegressionCV
from sklearn.linear_model.coordinate_descent import ConvergenceWarning
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import label_binarize
from sklearn import metrics
# 设置字符集,防止中文乱码
mpl.rcParams['font.sans-serif']=[u'simHei']
mpl.rcParams['axes.unicode_minus']=False
# 拦截异常
warnings.filterwarnings(action = 'ignore', category=ConvergenceWarning)
# 数据加载
path = "datas/iris.data"
names = ['sepal length', 'sepal width', 'petal length', 'petal width', 'cla']
df = pd.read_csv(path, header=None, names=names)
df['cla'].value_counts()
df.head()
def parseRecord(record):
result=[]
r = zip(names,record)
for name,v in r:
if name == 'cla':
if v == 'Iris-setosa':
result.append(1)
elif v == 'Iris-versicolor':
result.append(2)
elif v == 'Iris-virginica':
result.append(3)
else:
result.append(np.nan)
else:
result.append(float(v))
return result